

Open navigation menu[image: Scribd Logo]

Close suggestionsSearchSearch

enChange Language

UploadLoading...

User Settings
close menuWelcome to Scribd!

	

	Upload
	Read for free
	FAQ and support
	Language (EN)
	Sign in

Skip carousel
Carousel Previous
Carousel Next
	What is Scribd?
	Academic
	Professional
	Culture
	Hobbies & Crafts
	Personal Growth
	All Documents

	

Academic Documents

	Foreign Language Studies	Chinese
	ESL

	Science & Mathematics	Astronomy & Space Sciences
	Biology

	Study Aids & Test Prep	Book Notes
	College Entrance Exams

	Teaching Methods & Materials	Early Childhood Education
	Education Philosophy & Theory

All categories

	

Professional Documents

	Business	Business Analytics
	Human Resources & Personnel Management

	Career & Growth	Careers
	Job Hunting

	Computers	Applications & Software
	CAD-CAM

	Finance & Money Management	Accounting & Bookkeeping
	Auditing

	Law	Business & Financial
	Contracts & Agreements

	Politics	American Government
	International Relations

	Technology & Engineering	Automotive
	Aviation & Aeronautics

All categories

	

Culture Documents

	Art	Antiques & Collectibles
	Architecture

	Biography & Memoir	Artists and Musicians
	Entertainers and the Rich & Famous

	Comics & Graphic Novels
	History	Ancient
	Modern

	Philosophy

	Language Arts & Discipline	Composition & Creative Writing
	Linguistics

	Literary Criticism
	Social Science	Anthropology
	Archaeology

	True Crime

All categories

	

Hobbies & Crafts Documents

	Cooking, Food & Wine	Beverages
	Courses & Dishes

	Games & Activities	Card Games
	Fantasy Sports

	Home & Garden	Crafts & Hobbies
	Gardening

	Sports & Recreation	Baseball
	Basketball

All categories

	

Personal Growth Documents

	Lifestyle	Beauty & Grooming
	Fashion

	Religion & Spirituality	Buddhism
	Christianity

	Self-Improvement	Addiction
	Mental Health

	Wellness	Body, Mind, & Spirit
	Diet & Nutrition

All categories

Untitled

Uploaded by
slurp
0 ratings0% found this document useful (0 votes)

55 views
6 pages
Document Information
click to expand document informationCopyright
© © All Rights Reserved

Available Formats
PDF, TXT or read online from Scribd

Share this document
Share or Embed Document
Sharing Options
	Share on Facebook, opens a new windowFacebook

	Share on Twitter, opens a new windowTwitter

	Share on LinkedIn, opens a new windowLinkedIn

	Share with Email, opens mail clientEmail

	Copy linkCopy link

Did you find this document useful?
0%0% found this document useful, Mark this document as useful
0%0% found this document not useful, Mark this document as not useful

Is this content inappropriate?
Report this Document

Copyright:
© All Rights Reserved

Available Formats
Download as PDF, TXT or read online from Scribd

Flag for inappropriate content

Download now

SaveSave Untitled For Later
0 ratings0% found this document useful (0 votes)
55 views6 pages
Untitled

Uploaded by
slurp

Copyright:
© All Rights Reserved

Available Formats
Download as PDF, TXT or read online from Scribd

Flag for inappropriate content

SaveSave Untitled For Later
0%0% found this document useful, Mark this document as useful
0%0% found this document not useful, Mark this document as not useful
EmbedShare

Print

Download now

Jump to Page

You are on page 1of 6

Search inside document

CPS Recursive Ascent Parsing
Arthur Nunes-HarwittNassau Community CollegeOne Education DriveGarden City, NY 11530
nunesa@newton.matcmp.ncc.edu
E ::= + E E | n
ABSTRACTThe parsing problem is ubiquitous in Computer Science.Perhaps that is part of the reason it has been used so frequently to illustrate the power of continuations and monads.It is often the case, though, that the parser examples of continuation passing style and monads are top-down parsers. Iintend to show that the continuation passing style of programming naturally leads to bottom-up or recursive ascentparsers. The programming language Scheme will be used tocode example parsers.
1. INTRODUCTIONParsing is an important problem. So much so, that we currently have several powerful technologies available for parsing, such as top-down recursive descent parsing and thebottom-up LR family of automated parsing tools. Is thereany reason to look beyond these techniques?The LR automated parsing tools can generate parsers fora very large class of grammars. Nevertheless, programmersoften write recursive descent parsers despite the fact thatthat method can handle a smaller class of grammars. Why?In a word, recursive descent parsers are hackable. They areeasy to understand, and it is straightforward to insert semantic actions. In contrast, LR tools are black boxes thatgenerate inscrutable code. By writing a parser using continuation passing style (CPS) it is possible to get both thebenefit of being able to parse a large class of grammars andthe advantage of being able to understand the parser code.This paper is structured as follows. First I will summarizesome of the previous work done on parsing. Then I will givea brief overview of monadic programming since my parsersdesign, while not actually making use of monads, was influenced by those ideas. After that, I will discuss CPS recursiveascent parsing and give some sample parsers to demonstratethe power of the technique.
2. REVIEW OF PARSING
Figure 1: Grammar 1This section discusses various approaches to parsing andtheir respective advantages and disadvantages.
2.1
Top-Down Parsing

It is easy to write a recursive descent parser by hand; in fact,
often top-down parsing is used to illustrate some techniquein functional programming[11, 13, 14]. While it is possibleto automate recursive descent parsing[1, 5], the intuitionbehind the formalism involves viewing grammar variables asprocedures. Each production A ::= B1 Bn can be read,not as a rewrite rule, but rather as a method for getting A namely, get B1 through Bn . With this intuition, it is easyto translate a grammar into code, and it is easy to discernwhat a recursive descent parser is doing.For example, the productionA ::= B1,1 B1,m1 | | Bn,1 Bn,mncorresponds with the following Scheme[7] code.(define (get-A)(cond ((eq? (peekToken) predictor_1)(let ((result11 (get-B11))...(result1m1 (get-B1m1)))(make-result1 result11 ... result1m1)))...((eq? (peekToken) predictor_n)(let ((resultn1 (get-Bn1))...(resultnm1 (get-Bnmn)))(make-resultn resultn1 ... resultnmn)))(else (error "Syntax error"))))When there are tokens in the token input stream that canidentify or predict which rule to use, recursive descent parsing works very well. Grammar 1 (Figure 1) is an exampleof a grammar that poses no problem for recursive descentparsing. There are two rules, and they can be distinguishedimmediately because one starts with a plus sign and onestarts with a number.Grammar 2 (Figure 2) is an example of a grammar that ismore difficult. Not only is there no token to predict whichrule to use, but also, because of the left recursion, the parser
E ::= E E + | nFigure 2: Grammar 2SM
::=::=
<S|M< M > | <>
Figure 3: Grammar 3

will go into an infinite loop continually trying to get an E.
Fortunately, there is a simple transformation that eliminatesthe left recursion; this transformation also eliminates anyconfusion about which rule to pick.Grammar 3 (Figure 3) is an even more difficult example.Here there is no simple transformation to apply. The language generated by the grammar consists of a sequence ofless-than signs followed by matched nested less-than andgreater-than signs. Any less-than sign could potentiallystart the matched portion; the parser would have to guesswhich less-than sign it was. Deterministic recursive descentparsing cannot handle this grammar[5].2.22.2.1
::=::=::=::=::=::=::=::=::=::=::=::=::=::=::=::=
h E .n ih E .E E + ih E n. ih E E. E + ih E E E. + ih E E E +. in h n, E .E E + in h n, E E .E + i+ h +, E E E .+ in h n, E .n ih E n. i h E, E h E n. i h E, E h E E.E+ i h E, Eh E E.E+ i h E, E
.E E + iE .E + i .E E + i E .E + i

Figure 5: Leermakers transformation of grammar 2
This technique is known as classic recursive ascent parsing[2], and can sometimes make for faster parsers[8]. Unfortunately, it does not make for more readable parsers, as theprocedures in the recursive ascent parser correspond exactlyto the states in the LR parsing table.Bottom-Up Parsing2.2.3
LR Parsing
LR parsing[1, 5] refers to a family of bottom-up parser generator algorithms. The reason that these techniques are usedto build parser generators rather than actual parsers is thatit is too difficult to construct parsers manually using thesetechniques. LR based parsers all shift tokens from the tokeninput stream onto the parse stack. An oracle then decides ifwhat is on the top of the stack can be reduced using one ofthe productions in the grammar. The oracle is realized as afinite state machine. Differences in the techniques are determined by the way look-ahead is incorporated into the oracle;these differences affect the size of the parser generated.LR parsing is powerful; LR based parsers can handle all ofthe example grammars. However, as mentioned earlier, theyare very difficult to write by hand, and the parser code iseven more difficult to understand. A table representing theSLR oracle for the parser for grammar 2 (Figure 2) is infigure 4. Note that the table has many states even for thissimple grammar.
2.2.2
EEh n, E .n ih E, E .E E + ih E, E E .E + ih +, E E E .+ ih E .E E + ih E E .E + ih E E E .+ ih E .n ih n, E .E E + ih n, E E .E + ih E, E .E E + ih E, E E .E + ih E n. ih E E E +. i

Classic Recursive Ascent Parsing

While it is possible to generate table-driven top-down parsers,
it is also possible to construct procedure-based LR parsers.state01234
ns4s4r2r1
action+$accs3r2r1
gotoE12
2.2.4

Figure 4: SLR Parser Table

Recursive Ascent-Descent Parsing

Researchers, such as Horspool[8], have been concerned about
the complexity and inscrutability of LR parsers. One approach, called left-corner parsing[3, 8], involves waiting untilenough bottom-up information has been amassed that it isclear which production must be reduced. This often occursbefore all the variables of the productions right-hand sideare pushed onto the stack. In that case, top-down techniquescan be used for the rest of the right-hand side. If the bottomup part of the parser is written using recursive ascent, thistechnique is called recursive ascent-descent parsing. Thisapproach is powerful, and it is how I would automate CPSrecursive ascent parsing. However, while Horspool is interested in parser generators, I am focusing on writing parsersby hand.3.r2r1

Leermakers Approach to Recursive Ascent

Leermaker[9] takes a very different view of recursive ascent
parsing. Instead of basing the procedures on states constructed in the traditional approach to LR parser construction, he uses a complex transformation to construct a newgrammar that can be parsed with a recursive descent parser.This transformation involves items, just as the constructionof the oracle does in the traditional LR approach. Unfortunately, his technique suffers from the same problems asLR parsers parsers are difficult to read and write. Thetransformed grammar of grammar 2 (Figure 2), which canbe parsed directly by a recursive descent parser, is in figure5.REVIEW OF MONADS

Although I do not use monads, the parsers presented in this
paper use operators that hide certain parameters. That stylewas inspired by monads, and so I review that topic here.It is well known that the CPS-transform can be used to
model control[12, 6]. This transform adds a continuation
parameter to each term.xx.M(M N)call/cc====
k.(k x)k.(k (x.M))k.(M (m.(N (n.((m n) k)))))k.(k (f.c.((f (v.q.(c v))) c)))

Moggi[10] was the first to realize that adding parameters
to hold onto information necessary for a particular sideeffect, such as control, can be characterized mathematically as a monad. He and other researchers[4] point outthat much of the complexity and plumbing can be hiddenin the monadic operators. However, since the last line involves the continuation operator call/cc, it is possible to hidethe plumbing only by introducing another operator callcc=k.(k (f.c.((f (v.q.(c v))) c))). Following the recentconvention[13], I will use the names return and bind for themonadic operators. These operators are subject to rulesthat prevent them from doing anything more than plumbing. We see that if return = a.k.(k a), and bind =c.f.k.(c(a.((f a) k))), the CPS-transform can be written without the ks. In this example, (bind W (w.M)) isabbreviated (bind (w W) M).xx.M(M N)call/cc4.
= (return x)= (return (x.M))= (bind (m M) (bind (n N) (m n)))= callcc

CPS RECURSIVE ASCENT PARSING

So far, there have been two approaches to recursive ascent
parsing. The classic approach has a procedure for each stateof the parsing automaton. Leermakers approach involvestransforming a grammar G to a new grammar G0 , whichcan be parsed using a recursive descent parser. Actually,the two are related: non-terminals in Leermakers derivedgrammar G0 are items of the original grammar G. CPSrecursive ascent parsing is different from those methods inthat is does not involve computing the items of the grammar.The name recursive ascent, like recursive descent, isused here simply to describe the working of the parser. Further, the intuition behind the approach is similar to theintuition of recursive descent parsing but turned on itshead. With recursive descent parsing, the parser starts withthe start symbol, works its way down to the terminals, andthen comes back up. With CPS recursive ascent, the parserstarts with the terminals and continues as appropriate upwards until the start symbol is reached.Every parsing procedure has the following structure.((s f) ((ts svar sval) M))The parameters s and f are success and failure continuations, where a continuation has the form of the inner abstraction. These parameters are visible and are used explicitly as a means of combination. The inner abstraction(define (get-E s f)(token-stream-empty??f(test-token-stream??token-plus?(popping(get-E (get-E (reduce 2 E make-sum s) f) f))(test-token-stream??number?(shift E s)f))))

Figure 6: Parser for Grammar 1

is hidden using a monadic style. It is not possible to use
an actual monad because no values are returned due to thecontinuation passing style. The parameter ts is the tokenstream, svar is a stack of grammar variables, and sval is thestack of values determined by semantic actions. The parameters svar and sval could be represented by a single stack,but I found it simpler to have two stacks. I occasionallyrefer to svar simply as the parse stack. Using the parsingoperators keeps the stacks consistent with each other.There are only a few parsing operators: token-stream-empty??,test-token-stream??, test-parse-stack??, shift, reduce, reducetype, and popping. I use the convention of writing a concluding double question-mark for any operator that tests one ofthe hidden parameters and then calls a success or failurecontinuation as a result. The meaning of each operator isfairly intuitive; their definitions can be found in appendixA.Using the same three grammars illustrated earlier, I am going to give examples in Scheme[7] that show how to writeCPS recursive ascent parsers. These examples will alsodemonstrate that CPS recursive ascent parsers are easy toread, and that they are more powerful than recursive descent parsers. Like recursive descent parsers, CPS recursiveascent parsers will often try to get a grammar variable;however, there are occasions when there is no top-down predictor token. In those cases, the parser simply shifts a valueonto the parse stack, and continues to a procedure representing the fact that the parser has that value on the parsestack.Grammar 1 (Figure 1) is a simple grammar that is easilyparsed using recursive descent techniques. It should also beeasy to parse using CPS recursive ascent techniques, and,indeed, it is. Focusing on the terminals, the parser (Figure6) looks for a plus sign or a number. If it finds a plus sign, itcontinues by getting two Es and then reducing. If it findsa number it shifts it as an E, skipping an unnecessary step.Grammar 2 (Figure 2) is more difficult to parse. A topdown parser cannot handle the grammar until it is rewrittenso that the left recursion is eliminated. While the bottomup approaches can handle the grammar as is, they generatecomplicated parsers. As we have seen, even the SLR approach generates many states, and the other approaches torecursive ascent do no better.Whereas my parser code for the previous grammar was sim-(define (get-n s f)(token-stream-empty??f(test-token-stream??number?(shift E s)f)))(define (have-E s f)(token-stream-empty??s(test-token-stream??number?(shift E (have-EE s f))f)))(define (have-EE s f)(token-stream-empty??f(test-token-stream??token-plus?(popping(reduce 2 E make-sum (test-parse-stack??E-waiting?(have-EE s f)(have-E s f))))(test-token-stream??number?(shift E (have-EE s f))f))))(define (get-E s f)(get-n (have-E s f) f))

Figure 7: Parser for Grammar 2

ilar to a top-down parser, here I will start to illustrate how
to write the parser in a bottom-up style that does not eliminate left recursion. The procedures for this parser(Figure 7)are little or no more complicated than those for a recursivedescent parser.First I write a procedure that gets a number from the tokenstream. If it finds one, it shifts it onto the parse stack as anE; otherwise, it calls its failure continuation. Then I writetwo more procedures. One corresponds to the case wherethere is one E on the parse stack. If the token stream isempty, it succeeds; if it finds a number on the token stream,it shifts the number onto the parse stack as an E, and continues to the two-E case; otherwise, it calls its failure continuation. The other procedure corresponds to the case whenthere are two Es on the parse stack. If it finds a plus signon the token stream, it pops off the two Es, replaces themwith a single E, and then continues to the appropriate procedure based on what is on the parse stack; if it encountersa number, it continues to have two Es on the parse stack;otherwise it calls its failure continuation. One more procedure, get-E, glues the pieces of the parser together.Grammar 3 (Figure 3) cannot be parsed by a top-downparser. A top-down parser cannot pick which rule of S touse, since both start with a less-than sign. The bottom-upapproaches can handle the grammar, but as this grammaris more complicated than the previous two, there are evenmore states to contend with.(define (get-< s f)(token-stream-empty??f(test-token-stream??left-token?(shift < (get-< s f))f)))(define (have-M s f)(token-stream-empty??s(test-token-stream??right-token?(popping(test-parse-stack??<M-waiting?(reduce 2 M make-pair2 (have-M s f))f))f)))(define (reduce-to-start s f)(test-parse-stack??just-S?s(test-parse-stack??<S-waiting?(reduce 2 S make-seq (reduce-to-start s f))(test-parse-stack??M-waiting?(reduce-type S (reduce-to-start s f))f))))
(define (get-S s f)(get-<s(token-stream-empty??f(test-token-stream??right-token?(popping(test-parse-stack??<-waiting?(reduce 1 M make-pair1 (have-M (reduce-to-start s f) f))f))f))))

Figure 8: Parser for Grammar 3

Using the techniques developed to parse grammar 2, I will
show that CPS recursive ascent parsing is more powerfulthan recursive descent. Furthermore, this parser(Figure 8)will also be short and understandable, in contrast to previous bottom-up parsing techniques.For this grammar, I first write a procedure that shifts lessthan signs onto the parse stack; if there isnt one, it callsits failure continuation. I also write a procedure that corresponds to the case where there is an M on the top ofthe parse stack. If it finds a greater-than sign on the tokenstream, the token is popped off, and the M and the lessthan sign below it are reduced to an M . If the token streamis empty, it succeeds; otherwise, it calls its failure continuation. There are two more procedures necessary to makethings work. A reduction continuation procedure convertsan M at the top of the parse stack to an S, and then reducesa less-than sign and an S to simply an S. Finally, procedureget-S plugs the continuations into the appropriate places tocomplete the parser.5.
CONCLUSION

While it has long been possible to write parsers by hand,
and to parse a large class of grammars, it has not been possible to do both. A parser with both qualities is desirable,since it is easier to understand and modify a hand written parser. CPS recursive ascent parsing provides the bestof both worlds, with all the advantages of a hand writtenparser and the ability to parse a larger class of grammars.Questions for future research include, which error handlingstrategies are most appropriate, how one can get the bestperformance, and how these techniques can be adapted fornon-deterministic parsing.6.
ACKNOWLEDGMENTS

I would like to thank Melissa Nunes-Harwitt for carefully
reading previous drafts of this paper.7.
REFERENCES

[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,1985.[2] F. E. J. K. Aretz. On a Recursive Ascent Parser.Information Processing Letters, Vol. 29, No. 3,201-206, 1988.[3] A. J. Demers. Generalized Left Corner Parsing. Proc.4th Symposium on Principles of ProgrammingLanguages, 170-182, 1977.[4] D. Espinosa. Semantic Lego. Doctoral thesis,Columbia University, 1995.[5] C. N. Fischer, R. J. LeBlanc, Jr. Crafting a Compilerwith C. Benjamin/Cummings, 1991.[6] D. P. Friedman, M. Wand, C. T. Haynes. Essentials ofProgramming Languages 2nd Edition. MIT Press,2001.[7] R. Kelsey, W. Clinger, and J. Rees editors. Revised5Report on the Algorithmic Language Scheme. ACMSIGPLAN Notices, Vol. 33, No. 9, 26-76, 1998.
[8] R. N. Horspool. Recursive Ascent-Descent Parsing.
Journal of Computer Languages, Vol. 18, No. 1, 1-16,1993.[9] R. Leermakers. The Functional Treatment of Parsing.Kluwer Academic Publishers, 1993.[10] E. Moggi. Notions of Computation and Monads.Information and Computation, Vol. 93, 55-92, 1991.[11] C. Okasaki. Even Higher-Order Functions for Parsingor Why Would Anyone Ever Want to Use aSixth-Order Function? J. of Functional Programming,Vol. 8, No. 2, 195-199, 1998.[12] J. C. Reynolds. The Discoveries of Continuations.LISP AND SYMBOLIC COMPUTATION: AnInternational Journal, Vol. 6, 233-247,1993.[13] J. Sobel, E. Hilsdale, R. K. Dybvig, D. P. Friedman.Abstraction and Performance from Explicit MonadicReflection. Unpublished manuscript, 1999.[14] P. Wadler. How to Replace Failure by a List ofSuccesses. Conference on Function ProgrammingLanguages and Computer Architecture, 113-128, 1985.Appendix AHelper code for any CPS recursive ascent parser.(define peek-token-stream car)(define pop-token-stream cdr)(define empty-token-stream? null?)(define(define(define(define
top-stack car)pop-stack cdr)empty-stack? null?)empty-stack ())
(define-syntax popping(syntax-rules ()((popping ?k)(lambda (ts ps rs)(?k (pop-token-stream ts) ps rs)))))(define-syntax shift(syntax-rules ()((shift ?parse-var ?k)(lambda (ts ps rs)(?k (pop-token-stream ts)(cons (quote ?parse-var) ps)(cons (peek-token-stream ts) rs))))))(define (remove n L)(if (= n 0)L(remove (- n 1) (cdr L))))(define (retrieve n L)(let loop ((n n)(L L)(a ()))(if (= n 0)a(loop (- n 1) (cdr L) (cons (car L) a)))))(define-syntax reduce(syntax-rules ()((reduce ?n ?parse-var ?action ?k)(lambda (ts ps rs)

(let ((m ?n))
(?k ts(cons (quote ?parse-var) (remove m ps))(cons (apply ?action (retrieve m rs))(remove m rs))))))))(define-syntax reduce-type(syntax-rules ()((reduce-type ?parse-var ?k)(lambda (ts ps rs)(?kts(cons (quote ?parse-var)(pop-stack ps))rs)))))(define-syntax token-stream-empty??(syntax-rules ()((token-stream-empty?? s f)(lambda (ts ps rs)(if (empty-token-stream? ts)(s ts ps rs)(f ts ps rs))))))(define-syntax test-parse-stack??(syntax-rules ()((test-parse-stack?? ?test? s f)(lambda (ts ps rs)(if (?test? ps)(s ts ps rs)(f ts ps rs))))))(define-syntax test-token-stream??(syntax-rules ()((test-token-stream?? ?test? s f)(lambda (ts ps rs) ;assumes non-empty stream(if (?test? (peek-token-stream ts))(s ts ps rs)(f ts ps rs))))))(define (init-s ts ps rs)(if (empty-token-stream? ts)(top-stack rs)(init-f ts ps rs)))(define (init-f ts ps rs)(if (empty-token-stream? ts)(begin(display "Unexpected end of input.")(newline))(begin(display "Unexpected token ")(display (peek-token-stream ts))(newline)))ts)Appendix BHelper code for the example parsers.

Helper code for the parser for grammar 1.
(define (token-plus? t) (eq? t +))(define (make-sum r1 r2) (+ ,r1 ,r2))(define (parse ts)((get-E init-s init-f) ts empty-stack empty-stack))Helper code for the parser for grammar 2.
(define (token-plus? token) (eq? token +))
(define (E-waiting? stack)(and (not (empty-stack? stack))(not (empty-stack? (pop-stack stack)))(eq? (top-stack (pop-stack stack)) E)))(define (make-sum r1 r2) (+ ,r1 ,r2))(define (parse ts)((get-E init-s init-f) ts empty-stack empty-stack))Helper code for the parser for grammar 3.(define (left-token? token) (eq? token <))(define (right-token? token) (eq? token >))(define (<-waiting? stack)(and (not (empty-stack? stack))(eq? (top-stack stack) <)))(define (M-waiting? stack)(and (not (empty-stack? stack))(eq? (top-stack stack) M)))(define (<M-waiting? stack)(if (M-waiting? stack)(let ((s2 (pop-stack stack)))(and (not (empty-stack? s2))(eq? (top-stack s2) <)))#f))(define (<S-waiting? stack)(and (not (empty-stack? stack))(eq? (top-stack stack) S)(let ((s2 (pop-stack stack)))(and (not (empty-stack? s2))(eq? (top-stack s2) <)))))(define (just-S? stack)(and (not (empty-stack? stack))(eq? (top-stack stack) S)(empty-stack? (pop-stack stack))))(define (make-pair1 token) (< >))(define (make-pair2 token M) (< ,M >))(define (make-seq left right) (list left right))(define (parse ts)((get-S init-s init-f) ts empty-stack empty-stack))
You might also like
	The Subtle Art of Not Giving a F*ck: A Counterintuitive Approach to Living a Good Life[image: The Subtle Art of Not Giving a F*ck: A Counterintuitive Approach to Living a Good Life] From Everand
The Subtle Art of Not Giving a F*ck: A Counterintuitive Approach to Living a Good Life
Mark Manson
Rating: 4 out of 5 stars
4/5 (5781)

	The Yellow House: A Memoir (2019 National Book Award Winner)[image: The Yellow House: A Memoir (2019 National Book Award Winner)] From Everand
The Yellow House: A Memoir (2019 National Book Award Winner)
Sarah M. Broom
Rating: 4 out of 5 stars
4/5 (98)

	Shoe Dog: A Memoir by the Creator of Nike[image: Shoe Dog: A Memoir by the Creator of Nike] From Everand
Shoe Dog: A Memoir by the Creator of Nike
Phil Knight
Rating: 4.5 out of 5 stars
4.5/5 (537)

		Magazines

	Podcasts

	Sheet music

	Hidden Figures: The American Dream and the Untold Story of the Black Women Mathematicians Who Helped Win the Space Race[image: Hidden Figures: The American Dream and the Untold Story of the Black Women Mathematicians Who Helped Win the Space Race] From Everand
Hidden Figures: The American Dream and the Untold Story of the Black Women Mathematicians Who Helped Win the Space Race
Margot Lee Shetterly
Rating: 4 out of 5 stars
4/5 (890)

	Yes Please[image: Yes Please] From Everand
Yes Please
Amy Poehler
Rating: 4 out of 5 stars
4/5 (1888)

	Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future[image: Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future] From Everand
Elon Musk: Tesla, SpaceX, and the Quest for a Fantastic Future
Ashlee Vance
Rating: 4.5 out of 5 stars
4.5/5 (473)

	Never Split the Difference: Negotiating As If Your Life Depended On It[image: Never Split the Difference: Negotiating As If Your Life Depended On It] From Everand
Never Split the Difference: Negotiating As If Your Life Depended On It
Chris Voss
Rating: 4.5 out of 5 stars
4.5/5 (838)

	The Hard Thing About Hard Things: Building a Business When There Are No Easy Answers[image: The Hard Thing About Hard Things: Building a Business When There Are No Easy Answers] From Everand
The Hard Thing About Hard Things: Building a Business When There Are No Easy Answers
Ben Horowitz
Rating: 4.5 out of 5 stars
4.5/5 (344)

	Team of Rivals: The Political Genius of Abraham Lincoln[image: Team of Rivals: The Political Genius of Abraham Lincoln] From Everand
Team of Rivals: The Political Genius of Abraham Lincoln
Doris Kearns Goodwin
Rating: 4.5 out of 5 stars
4.5/5 (234)

	Grit: The Power of Passion and Perseverance[image: Grit: The Power of Passion and Perseverance] From Everand
Grit: The Power of Passion and Perseverance
Angela Duckworth
Rating: 4 out of 5 stars
4/5 (587)

	A Heartbreaking Work Of Staggering Genius: A Memoir Based on a True Story[image: A Heartbreaking Work Of Staggering Genius: A Memoir Based on a True Story] From Everand
A Heartbreaking Work Of Staggering Genius: A Memoir Based on a True Story
Dave Eggers
Rating: 3.5 out of 5 stars
3.5/5 (231)

	On Fire: The (Burning) Case for a Green New Deal[image: On Fire: The (Burning) Case for a Green New Deal] From Everand
On Fire: The (Burning) Case for a Green New Deal
Naomi Klein
Rating: 4 out of 5 stars
4/5 (72)

	The Little Book of Hygge: Danish Secrets to Happy Living[image: The Little Book of Hygge: Danish Secrets to Happy Living] From Everand
The Little Book of Hygge: Danish Secrets to Happy Living
Meik Wiking
Rating: 3.5 out of 5 stars
3.5/5 (399)

	The Emperor of All Maladies: A Biography of Cancer[image: The Emperor of All Maladies: A Biography of Cancer] From Everand
The Emperor of All Maladies: A Biography of Cancer
Siddhartha Mukherjee
Rating: 4.5 out of 5 stars
4.5/5 (271)

	Devil in the Grove: Thurgood Marshall, the Groveland Boys, and the Dawn of a New America[image: Devil in the Grove: Thurgood Marshall, the Groveland Boys, and the Dawn of a New America] From Everand
Devil in the Grove: Thurgood Marshall, the Groveland Boys, and the Dawn of a New America
Gilbert King
Rating: 4.5 out of 5 stars
4.5/5 (265)

	Principles: Life and Work[image: Principles: Life and Work] From Everand
Principles: Life and Work
Ray Dalio
Rating: 4 out of 5 stars
4/5 (599)

	Rise of ISIS: A Threat We Can't Ignore[image: Rise of ISIS: A Threat We Can't Ignore] From Everand
Rise of ISIS: A Threat We Can't Ignore
Jay Sekulow
Rating: 3.5 out of 5 stars
3.5/5 (137)

	Fear: Trump in the White House[image: Fear: Trump in the White House] From Everand
Fear: Trump in the White House
Bob Woodward
Rating: 3.5 out of 5 stars
3.5/5 (738)

	Angela's Ashes: A Memoir[image: Angela's Ashes: A Memoir] From Everand
Angela's Ashes: A Memoir
Frank McCourt
Rating: 4.5 out of 5 stars
4.5/5 (440)

	John Adams[image: John Adams] From Everand
John Adams
David McCullough
Rating: 4.5 out of 5 stars
4.5/5 (2409)

	The Gifts of Imperfection: Let Go of Who You Think You're Supposed to Be and Embrace Who You Are[image: The Gifts of Imperfection: Let Go of Who You Think You're Supposed to Be and Embrace Who You Are] From Everand
The Gifts of Imperfection: Let Go of Who You Think You're Supposed to Be and Embrace Who You Are
Brene Brown
Rating: 4 out of 5 stars
4/5 (1090)

	The Unwinding: An Inner History of the New America[image: The Unwinding: An Inner History of the New America] From Everand
The Unwinding: An Inner History of the New America
George Packer
Rating: 4 out of 5 stars
4/5 (45)

	The World Is Flat 3.0: A Brief History of the Twenty-first Century[image: The World Is Flat 3.0: A Brief History of the Twenty-first Century] From Everand
The World Is Flat 3.0: A Brief History of the Twenty-first Century
Thomas L. Friedman
Rating: 3.5 out of 5 stars
3.5/5 (2219)

	Bad Feminist: Essays[image: Bad Feminist: Essays] From Everand
Bad Feminist: Essays
Roxane Gay
Rating: 4 out of 5 stars
4/5 (1015)

	Steve Jobs[image: Steve Jobs] From Everand
Steve Jobs
Walter Isaacson
Rating: 4.5 out of 5 stars
4.5/5 (806)

	The Glass Castle: A Memoir[image: The Glass Castle: A Memoir] From Everand
The Glass Castle: A Memoir
Jeannette Walls
Rating: 4.5 out of 5 stars
4.5/5 (1711)

	The Outsider: A Novel[image: The Outsider: A Novel] From Everand
The Outsider: A Novel
Stephen King
Rating: 4 out of 5 stars
4/5 (1799)

	The Sympathizer: A Novel (Pulitzer Prize for Fiction)[image: The Sympathizer: A Novel (Pulitzer Prize for Fiction)] From Everand
The Sympathizer: A Novel (Pulitzer Prize for Fiction)
Viet Thanh Nguyen
Rating: 4.5 out of 5 stars
4.5/5 (119)

	The Light Between Oceans: A Novel[image: The Light Between Oceans: A Novel] From Everand
The Light Between Oceans: A Novel
M.L. Stedman
Rating: 4.5 out of 5 stars
4.5/5 (789)

	Wolf Hall: A Novel[image: Wolf Hall: A Novel] From Everand
Wolf Hall: A Novel
Hilary Mantel
Rating: 4 out of 5 stars
4/5 (3811)

	The Woman in Cabin 10[image: The Woman in Cabin 10] From Everand
The Woman in Cabin 10
Ruth Ware
Rating: 3.5 out of 5 stars
3.5/5 (2322)

	Brooklyn: A Novel[image: Brooklyn: A Novel] From Everand
Brooklyn: A Novel
Colm Toibin
Rating: 3.5 out of 5 stars
3.5/5 (1937)

	The Perks of Being a Wallflower[image: The Perks of Being a Wallflower] From Everand
The Perks of Being a Wallflower
Stephen Chbosky
Rating: 4.5 out of 5 stars
4.5/5 (2099)

	A Man Called Ove: A Novel[image: A Man Called Ove: A Novel] From Everand
A Man Called Ove: A Novel
Fredrik Backman
Rating: 4.5 out of 5 stars
4.5/5 (4609)

	The Art of Racing in the Rain: A Novel[image: The Art of Racing in the Rain: A Novel] From Everand
The Art of Racing in the Rain: A Novel
Garth Stein
Rating: 4 out of 5 stars
4/5 (4192)

	A Tree Grows in Brooklyn[image: A Tree Grows in Brooklyn] From Everand
A Tree Grows in Brooklyn
Betty Smith
Rating: 4.5 out of 5 stars
4.5/5 (1928)

	Little Women[image: Little Women] From Everand
Little Women
Louisa May Alcott
Rating: 4 out of 5 stars
4/5 (104)

	Manhattan Beach: A Novel[image: Manhattan Beach: A Novel] From Everand
Manhattan Beach: A Novel
Jennifer Egan
Rating: 3.5 out of 5 stars
3.5/5 (791)

	Sing, Unburied, Sing: A Novel[image: Sing, Unburied, Sing: A Novel] From Everand
Sing, Unburied, Sing: A Novel
Jesmyn Ward
Rating: 4 out of 5 stars
4/5 (1103)

	Her Body and Other Parties: Stories[image: Her Body and Other Parties: Stories] From Everand
Her Body and Other Parties: Stories
Carmen Maria Machado
Rating: 4 out of 5 stars
4/5 (821)

	The Constant Gardener: A Novel[image: The Constant Gardener: A Novel] From Everand
The Constant Gardener: A Novel
John le Carré
Rating: 3.5 out of 5 stars
3.5/5 (104)

Footer menu
Back to top

About
	About Scribd
	Everand: Ebooks & Audiobooks
	SlideShare
	Press
	Join our team!
	Contact us
	Invite friends
	Scribd for enterprise

Support
	Help / FAQ
	Accessibility
	Purchase help
	AdChoices

Legal
	Terms
	Privacy
	Copyright
	Do not sell or share my personal information

Social
	Instagram Instagram
	Twitter Twitter
	Facebook Facebook
	Pinterest Pinterest

Get our free apps
	[image: Scribd - Download on the App Store]

	[image: Scribd - Get it on Google Play]

About
	About Scribd
	Everand: Ebooks & Audiobooks
	SlideShare
	Press
	Join our team!
	Contact us
	Invite friends
	Scribd for enterprise

Legal
	Terms
	Privacy
	Copyright
	Do not sell or share my personal information

Support
	Help / FAQ
	Accessibility
	Purchase help
	AdChoices

Social
	Instagram Instagram
	Twitter Twitter
	Facebook Facebook
	Pinterest Pinterest

Get our free apps
	[image: Scribd - Download on the App Store]

	[image: Scribd - Get it on Google Play]

	Documents

Language:
English
close menu	English(selected)
	Español
	Português
	Deutsch
	Français
	Русский
	Italiano
	Română
	Bahasa Indonesia

Learn more

Copyright © 2024 Scribd Inc.

Language:
English
close menu	English(selected)
	Español
	Português
	Deutsch
	Français
	Русский
	Italiano
	Română
	Bahasa Indonesia

Learn more

Copyright © 2024 Scribd Inc.

